Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endourol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38468539

RESUMO

Introduction: Retrograde intrarenal surgery (RIRS) is associated with complications, many of which are related to the intrarenal pressure (IRP). We aim to describe the design of a novel isoprenaline-eluting guidewire ("IsoWire") and present the results from the first in vitro release studies and the first animal studies showing its effect on IRP. Materials and Methods: The IsoWire comprises a Nitinol core surrounded by a stainless-steel wire wound into a tight coil. The grooves created by this coil provided a reservoir for adding a hydrogel coating into which isoprenaline, a beta-agonist, was loaded. Animal studies were performed using a porcine model. For the control, IRP, heart rate (HR), and mean arterial pressure (MAP) were measured continuously for 6 minutes with a standard guidewire in place. For the experiment, the standard hydrophilic guidewire was removed, the IsoWire was inserted into the renal pelvis, and the same parameters were measured. Results: In vitro analysis of the isoprenaline release profile showed that most (63.9 ± 5.9%) of the loaded drug mass was released in the 1st minute, and almost all of the drug was released in the first 4 minutes exponentially. Porcine studies showed a 25.1% reduction in IRP in the IsoWire that released 10 µg in the 1st minute; however, there was a marked increase in HR. The average percentage reduction in IRP was 8.95% and 21.3% in the IsoWire that released 5 and 7.5 µg of isoprenaline, respectively, with no changes in HR or MAP. Conclusions: The IsoWire, which releases 5 and 7.5 µg of isoprenaline in the 1st minute, appears to be safe and effective in reducing the IRP. Further studies are needed to establish whether the isoprenaline-induced ureteral relaxation will render easier insertion of a ureteral access sheath, reduce IRP during sheathless RIRS, or even promote the practice of sheathless RIRS.

2.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006099

RESUMO

The nanoprecipitation method was used to formulate ε-polycaprolactone (PCL) into fluorescent nanoparticles. Two methods of mixing the phases were evaluated: introducing the organic phase into the aqueous phase dropwise and via a specially designed microfluidic device. As a result of the nanoprecipitation process, fluorescein-loaded nanoparticles (NPs) with a mean diameter of 127 ± 3 nm and polydispersity index (PDI) of 0.180 ± 0.009 were obtained. The profiles of dye release were determined in vitro using dialysis membrane tubing, and the results showed a controlled release of the dye from NPs. In addition, the cytotoxicity of the NPs was assessed using an MTT assay. The PCL NPs were shown to be safe and non-toxic to L929 and MG63 cells. The results of the present study have revealed that PCL NPs represent a promising system for developing new drug delivery systems.

3.
Biomedicines ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37238978

RESUMO

Polysaccharides are the most abundant polymers in nature. They exhibit robust biocompatibility, reliable non-toxicity, and biodegradable character; thus, they are employed in multiple biomedical applications. The presence of chemically accessible functional groups on the backbone of biopolymers (amine, carboxyl, hydroxyl, etc.) makes them suitable materials for chemical modification or drug immobilisation. Among different drug delivery systems (DDSs), nanoparticles have been of great interest in scientific research in the last decades. In the following review, we want to address the issue of rational design of nanoparticle (NP)-based drug delivery systems in reference to the specificity of the medication administration route and resulting requirements. In the following sections, readers can find a comprehensive analysis of the articles published by authors with Polish affiliations in the last few years (2016-2023). The article emphasises NP administration routes and synthetic approaches, followed by in vitro and in vivo attempts toward pharmacokinetic (PK) studies. The 'Future Prospects' section was constructed to address the critical observations and gaps found in the screened studies, as well as to indicate good practices for polysaccharide-based nanoparticle preclinical evaluation.

4.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112287

RESUMO

Methods based on nucleic acid detection are currently the most commonly used technique in COVID-19 diagnostics. Although generally considered adequate, these methods are characterised by quite a long time-to-result and the necessity to prepare the material taken from the examined person-RNA isolation. For this reason, new detection methods are being sought, especially those characterised by the high speed of the analysis process from the moment of sampling to the result. Currently, serological methods of detecting antibodies against the virus in the patient's blood plasma have attracted much attention. Although they are less precise in determining the current infection, such methods shorten the analysis time to several minutes, making it possible to consider them a promising method for screening tests in people with suspected infection. The described study investigated the feasibility of a surface plasmon resonance (SPR)-based detection system for on-site COVID-19 diagnostics. A simple-to-use portable device was proposed for the fast detection of anti-SARS-CoV-2 antibodies in human plasma. SARS-CoV-2-positive and -negative patient blood plasma samples were investigated and compared with the ELISA test. The receptor-binding domain (RBD) of spike protein from SARS-CoV-2 was selected as a binding molecule for the study. Then, the process of antibody detection using this peptide was examined under laboratory conditions on a commercially available SPR device. The portable device was prepared and tested on plasma samples from humans. The results were compared with those obtained in the same patients using the reference diagnostic method. The detection system is effective in the detection of anti-SARS-CoV-2 with the detection limit of 40 ng/mL. It was shown that it is a portable device that can correctly examine human plasma samples within a 10 min timeframe.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ressonância de Plasmônio de Superfície , Teste para COVID-19 , Anticorpos Antivirais
5.
ACS Omega ; 7(43): 39234-39249, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340063

RESUMO

Surface properties are crucial for medical device and implant research and applications. We present novel polycatecholamine coatings obtained by oxidative polymerization of l-tyrosine, l-phenylalanine, and 2-phenylethylamine based on mussel glue-inspired chemistry. We optimized the reaction parameters and examined the properties of coatings compared to the ones obtained from polydopamine. We produced polycatecholamine coatings on various materials used to manufacture implantable medical devices, such as polyurethane, but also hard-to-coat polydimethylsiloxane, polytetrafluoroethylene, and stainless steel. The coating process results in significant hydrophilization of the material's surface, reducing the water contact angle by about 50 to 80% for polytetrafluoroethylene and polyurethane, respectively. We showed that the thickness, roughness, and stability of the polycatecholamine coatings depend on the chemical structure of the oxidized phenylamine. In vitro experiments showed prominent hemocompatibility of our coatings and significant improvement of the adhesion and proliferation of human umbilical vein endothelial cells. The full confluence on the surface of coated polytetrafluoroethylene was achieved after 5 days of cell culture for all tested polycatecholamines, and it was maintained after 14 days. Hence, the use of polycatecholamine coatings can be a simple and versatile method of surface modification of medical devices intended for contact with blood or used in tissue engineering.

6.
Biomacromolecules ; 22(2): 467-480, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33347750

RESUMO

Herein we present an innovative approach to produce biocompatible, degradable, and stealth polymeric nanoparticles based on poly(lipoic acid), stabilized by a PEG-ended surfactant. Taking advantage of the well-known thiol-induced polymerization of lipoic acid, a universal and nontoxic nanovector consisted of a solid cross-linked polymeric matrix of lipoic acid monomers was prepared and loaded with active species with a one-step protocol. The biological studies demonstrated a high stability in biological media, the virtual absence of "protein" corona in biological fluids, the absence of acute toxicity in vitro and in vivo, complete clearance from the organism, and a relevant preference for short-term accumulation in the heart. All these features make these nanoparticles candidates as a promising tool for nanomedicine.


Assuntos
Nanopartículas , Coroa de Proteína , Ácido Tióctico , Nanomedicina , Polietilenoglicóis , Polímeros
7.
Front Chem ; 7: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984740

RESUMO

Fluorescence is a powerful tool for mapping biological events in real-time with high spatial resolution. Ultra-bright probes are needed in order to achieve high sensitivity: these probes are typically obtained by gathering a huge number of fluorophores in a single nanoparticle (NP). Unfortunately this assembly produces quenching of the fluorescence because of short-range intermolecular interactions. Here we demonstrate that rational structural modification of a well-known molecular fluorophore N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) produces fluorophores that self-assemble in nanoparticles in the biocompatible environment without any dramatic decrease of the fluorescence quantum yield. Most importantly, the resulting NP show, in an aqueous environment, a brightness which is more than six orders of magnitude higher than the molecular component in the organic solvent. Moreover, the NP are prepared by nanoprecipitation and they are stabilized only via non-covalent interaction, they are surprisingly stable and can be observed as individual bright spots freely diffusing in solution at a concentration as low as 1 nM. The suitability of the NP as biocompatible fluorescent probes was demonstrated in the case of HeLa cells by fluorescence confocal microscopy and MTS assays.

8.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 2): 103-108, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30800431

RESUMO

We report the synthesis of a new macrocyclic receptor, namely 2,8,14,20-tetra-hexyl-4,24:6,10:12,16:18,22-O,O'-tetra-kis-[2,3-di-hydro-[1,4]dioxino[2,3-g]quinoxalin-7,8-di-yl]resorcin[4]arene, DeepQxCav, obtained by the addition of ethyl-ene glycol di-tosyl-ate to an octa-hydroxy quinoxaline cavitand. A 1:1 supra-molecular complex of this cavitand with benzene has been obtained and analysed through X-ray diffraction analysis. The complex, of general formula C92H88O16N8·C6H6, crystallizes in the space group C2/c, with the cavitand host located about a twofold rotation axis. The benzene guest, which is held inside the cavity by C-H⋯π inter-actions and dispersion forces, is disordered over two equivalent sites, one in a general position and one lying on a twofold axis. The crystal structure features C-H⋯O hydrogen bonds and C-H⋯π inter-actions involving the alkyl chains, the aromatic rings, and the O atoms of the dioxane moiety of the resorcinarene scaffold. The crystal studied was refined as a two-component twin.

9.
ACS Sens ; 2(4): 590-598, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28723190

RESUMO

In this work we report a comprehensive study leading to the fabrication of a prototype sensor for environmental benzene monitoring. The required high selectivity and ppb-level sensitivity are obtained by coupling a silicon-integrated concentration unit containing the specifically designed EtQxBox cavitand to a miniaturized PID detector. In the resulting stand-alone sensor, the EtQxBox receptor acts at the same time as highly sensitive preconcentrator for BTEX and GC-like separation phase, allowing for the selective desorption of benzene over TEX. The binding energies of the complexes between EtQxBox and BTX are calculated through molecular mechanics calculations. The examination of the corresponding crystal structures confirms the trend determined by computational studies, with the number of C-H···N and CH···π interactions increasing from 6 to 9 along the series from benzene to o-xylene. The analytical performances of EtQxBox are experimentally tested via SPME, using the cavitand as fiber coating for BTEX monitoring in air. The cavitand EFs are noticeably higher than those obtained by using the commercial CAR-DVB-PDMS. The LOD and LOQ are calculated in the ng/m3 range, outperforming the commercial available systems in BTEX adsorption. The desired selective desorption of benzene is achieved by applying a smart temperature program on the EtQxBox mesh, which starts releasing benzene at lower temperatures than TEX, as predicted by the calculated binding energies. The sensor performances are experimentally validated and ppbv level sensitivity toward the carcinogenic target aromatic benzene was demonstrated, as required for environmental benzene exposure monitoring in industrial applications and outdoor environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...